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Abstract: Machine learning models are often used to automate routine tasks. In settings
where mistakes are costly, we can trade off accuracy for coverage by abstaining from making
a prediction on instances for which the model is uncertain. In this work, we present a
new approach to selective classification in deep learning with concepts. Our approach
constructs a concept bottleneck model where the front-end model can make predictions
given soft concepts and leverage concept confirmation to improve coverage and performance
under abstention. We develop techniques to propagate uncertainty and identify concepts
for confirmation. We evaluate our approach on real-world and synthetic datasets, showing
that it can improve performance and coverage across a range of tasks.

1. Introduction

One of the most promising applications of modern machine learning is the ability to au-
tomate routine tasks. These opportunities include tasks such as diagnosing lesions from
dermatology images [13], detecting suspicious activity in credit card transactions [1], or
species identification using wildlife footage [25]. Despite rapid progress in automated systems’
predictive capabilities, deploying these systems in high-stakes settings remains challenging.
Two requirements slow adoption:

1. Performance: Models are often used to automate tasks a human can perform correctly. In
these cases, maintaining high performance is expected given that a non-automated system
should have near-perfect performance and because even small performance gaps can have
a disproportionate impact. This is because automation scales, meaning that systems
can compromise safety by rapidly generating a high volume of incorrect predictions. For
instance, a small decrease in accuracy in skin cancer detection could result in delayed
treatment, posing significant risks to human health and lives.

2. Interpretability : One of the barriers to adopting systems that can automate routine tasks
is a lack of interpretability. Put simply, stakeholders would like to understand how a
system makes its prediction, check that it is working correctly once it is deployed, and
maintain the ability to override the prediction in an informed manner.

One way to build interpretability into models for decision-making is to use deep learning
with concept labels, or concept bottleneck models. However, concept bottleneck models
will often perform poorly on datasets where we lack sufficiently rich concepts or when given
uncertain concept predictions since they must be trained on a dataset of hard concept labels
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Figure 1: Overview of automation with a conceptual safeguard before confirmation (left) and after
confirmation (right). We consider an image recognition task to predict melanoma from an image of a skin
lesion. Given the image x, the model outputs ŷ ∈ {0, 1,⊥} where 1 indicates melanoma and ⊥ indicates
abstention. The concept predictors g1 . . . gm that output the predicted probability of m human-verifiable
concepts such as Dotted and Pigmented. The conceptual safeguard takes these probabilities as input. It
uses them to propagate the uncertainty in concept detectors through system so that the front-end model
fup(ĉ) outputs a more reliable estimate of uncertainty that can be used to guide abstention decisions. Under
confirmation of concept IrregDots (right), the predicted probability is replaced with 1.0 as the concept is
present. This in turn updates the predicted probability of the outcome p(melanoma) = 0.91, which relieves
abstention h(fup(ĉ)) = 1.0 and improves coverage.
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[27, 28]. Overcoming this challenge requires building concept bottleneck models that can
handle uncertain predictions, perform well under selective classification, and are amenable
to concept confirmation. To build models that can support selective classification, we must
quantify the uncertainty y in concept predictions and propagate this uncertainty end-to-end,
including capturing uncertainty related to concept prediction.

To enable concept confirmation, we must build the system in such a way that imputing the
true concept value reliably improves performance. In this work, we present a new approach to
building deep learning systems that address these challenges by drawing on ideas in selective
classification and concept bottleneck models to build a versatile system for automation. Our
approach seeks to build a classification model with conceptual safeguards (see Fig. 1): i.e.,
a model that can assign predictions on the basis of human-verifiable concepts, and that
can abstain from prediction when these concepts are not detected with adequate certainty.
Conceptual safeguards use selective classification to restrict automation to instances where
the model is sufficiently confident – i.e., by allowing models to abstain from predicting when
they are insufficiently confident. In tandem, conceptual safeguards address interpretability
through a concept bottleneck model – which provides an architecture that allows end-users to
understand how the system makes its predictions, check the prediction logic and reduce the
number of abstentions by verifying uncertain concepts at prediction time. In effect, conceptual
safeguards maintain interpretability while maintaining performance and maximizing coverage,
or the proportion of samples on which the system can safely predict.

The main contributions of this work include:

1. We introduce conceptual safeguards, a versatile approach to automating classification
tasks that promotes safety and interpretability on deep learning tasks with concept labels.
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2. We develop a technique to propagate the uncertainty from predicted concepts to predicted
labels. The technique improves overall model performance by accounting for uncertainty
and supports the development of reliable selective classification in concept bottleneck
models.

3. We propose a method for flagging predicted concepts for human confirmation. In our
proposed systems, concept confirmation can reliably improve model coverage while main-
taining performance.

4. We conduct an empirical investigation of our proposed approach compared with baseline
concept bottleneck models equipped with selective classification. Our results show that
the proposed approach can improve coverage and performance without confirmation as
well as lead to dramatic gains in coverage under concept confirmation.

Related Work

Selective Classification Our work builds on work in selective classification or classification
with a reject option. Selective classification is a general-purpose family of methods to build
models that abstain from prediction on low-confidence samples [3, 4, 10, 11]. The goal of
selective classification is to improve performance while keeping prediction coverage as high
as possible. Allowing for abstention also enables partial automation, in which prediction
is automated only on samples with high certainty [8]. This is useful in applications with
strict performance criteria due to the cost of mistakes, such as in cancer diagnosis [7], and
in applications where it is difficult to train a model with consistently high performance,
such as in species identification [21]. Recent work extends these benefits to deep learning
settings [6, 12]. Applying selective classification in deep learning is challenging because most
approaches require accurate uncertainty estimates to guide abstention decisions [2, 9]. We
seek to overcome this challenge in concept bottleneck models by propagating uncertainty
from the concept detectors to the front-end outcome predictor.

Deep Learning with Concepts Labels Our work is related to work on using concept
labels in deep learning. In particular, concept bottleneck models seek to improve model
interpretability by leveraging dataset annotations to learn concepts and outcome predictions
sequentially [17]. Methods for learning with concepts derived from raw inputs are motivated
by their ability to provide an unprecedented degree of interpretability, such as allowing
observation of counterfactuals or correcting concepts to improve performance. One challenge
for learning with concepts includes a need for annotations in training data, which limits the
performance of these types of models compared to alternative approaches that do not require
concept labels [22, 27, 28].

Performance is further hampered by the requirement that the front-end model be trained
on and accept hard concept labels, or else risk label leakage and preclude concept confir-
mation [14, 20]. While concept bottleneck models can be trained on soft labels, we are
specifically interested in concept models that allow confirmation to improve performance
and coverage. This challenge limits the overall performance of these types of models [17]
and makes it difficult to estimate model uncertainty. We seek to meet the requirements for
confirmation and avoid label leakage while leveraging uncertainty to improve overall model
performance.
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2. Problem Statement

We consider a classification task with the goal of predicting a label using a set of com-
plex features and simple concepts. We start with a dataset of n i.i.d. training instances
{(xi, ci, yi)}ni=1. Each example consists of a vector of d features xi ∈ X ⊆ Rd (e.g., pixels
in an x-ray image), a label yi ∈ Y = {0, 1} (e.g., yi = 1 if patient i has arthritis), and m
concepts ci ∈ C = {0, 1}m (e.g., ci,k = 1 if image i contains a bone spur).

We use the dataset to build a concept bottleneck model to predict the label y. A concept
bottleneck model consists of two components:

• A concept detector g : X → [0, 1]m, which maps features to a vector of probability
predictions qi := g(xi) ∈ [0, 1]m where qi,k is the predicted probability that ci,k = 1.

• A front-end model f : C → Y, which maps a vector of hard concepts ci to a predicted
probability of the outcome yi := f(ci), where yi is the predicted probability that yi = 1.

We train the concept detector and front-end model using supervised learning with the datasets
{(xi, ci)}ni=1 and {(ci, yi)}ni=1, respectively. Training the concept detectors separately ensures
that we can train each concept detector using as much data as possible. In contrast, training
a single model that predicts all concepts at once requires that we only consider a subset of
training instances without missing concept labels. We train the concept detectors g1, . . . , gm
to output probability predictions (e.g., ERM with the cross-entropy loss). We calibrate the
models using a post-hoc calibration technique (e.g., isotonic temperature scaling [29] or Platt
Scaling [23]). We train the front-end model f independently from the concept detectors – i.e.,
using the true concepts c ∈ {0, 1} rather than the predicted concepts q. Independent training
is a key requirement for any concept bottleneck model where humans intervene on concepts.
A front-end model that is trained using the predicted concepts may require incorrect concept
predictions to assign accurate label predictions [14, 18, 19]. Concept bottleneck models that
do use uncertain concepts trade this mechanism for intervenability, or the ability to intervene
on concepts to improve predictions.

Model Pipeline We view the concept detector and front-end model as an end-to-end
predictor h : X → {0, 1,⊥} and denote its output ŷ := h(x). Here, the end-to-end predictor
h either outputs a hard label prediction ŷ ∈ 0, 1 or abstains from prediction ŷ =⊥. The
requirements for our end-to-end predictor h are twofold:

1. We control selective accuracy, i.e., the accuracy of h over instances on which it outputs a
prediction: Accuracy(h) := Pr (y = ŷ | ŷ 6=⊥)

2. We maximize coverage, i.e., the proportion of instances instances on which h outputs a
prediction: Coverage(h) := Pr (ŷ 6=⊥).

Our goal is to maximize coverage subject to the constraint that accuracy exceeds 1 − α,
for a user-specified error tolerance α ∈ [0, 1]. We control accuracy and coverage through
abstention and concept confirmation, respectively (see Fig. 2).

Abstention To avoid making predictions on instances where confidence is low and errors
are likely, we incorporate the option to abstain. Given a confidence threshold τ ∈ [0, 1], an
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abstention function ϕτ : [0, 1]→ Y ∪ {⊥} takes as input a probabilistic prediction yi ∈ [0, 1],
and returns a prediction:

ŷi = ϕτ (yi) =


1 if yi > 1− τ
0 if yi < τ

⊥ otherwise

Intuitively, the abstention function rounds the probabilistic prediction to a hard prediction if
there is sufficient confidence and otherwise abstains.

Confirmation We let users confirm the predicted concepts for any given instance. For
example, in the x-ray screening task, we could ask a human to confirm that concept k is
present in x-ray i. We assume that all concepts are human-verifiable [c.f., concepts where a
human may be uncertain as in 5]. Given any concept that we choose to confirm. we replace
the soft prediction qi,k ∈ [0, 1] with its ground-truth value ci,k ∈ {0, 1}. We use the term
“confirmation” as it reflects a specific kind of intervention.1

We write the confirmation process as a function ψS : [0, 1]m → [0, 1]m where S ⊆ [m]
denotes a subset of concepts to confirm. The function takes as input the vector of concept
predictions and outputs pi = [pi,1, . . . , pi,m] ∈ [0, 1]m where:

pi,k :=

{
ci,k if k ∈ S
qi,k if k /∈ S

(1)

In what follows, we will consider systems in which we the concept predictions determine the
subset of concepts that we flag for confirmation, in which case we write S(qi) instead of S.

Design Objectives Our task is to design these components so that they collectively define
a model h : X → Y ∪ {⊥} to maximize coverage subject to a target level of system accuracy.
Taken together, our end-to-end predictor has the following structure: given features, we
infer concepts with g, confirm a subset of the concepts with ψ, predict the label with f , and
decide to abstain with ϕ:

h : x
g7→ q

ψ7→ p
f7→ y

ϕ7→ ŷ

1. In general, the term “intervention” can refer to a broad family of procedures where a human alters the
output of a concept detector. For example, it may refer to “correction” in which a human replaces a hard
concept prediction with its correct value.
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Figure 2: Coverage versus selective accuracy
with and without concept confirmation. Cover-
age increases while selective accuracy decreases.
Concept confirmation improves this tradeoff for
a given threshold 1− α, allowing for greater cov-
erage while maintaining performance at or above
the threshold.

We treat the concept detectors and front-end
model as given. Thus, our main components for
building conceptual safeguards consist of devel-
oping techniques for uncertainty propagation and
confirmation.

• Confirmation: We wish to design methods that
can select samples to confirm so that we max-
imize coverage, maintain accuracy, and adhere
to a user-specific confirmation budget that is
set to reflect the desired level of human inter-
vention in a system.

• Propagating Concept Uncertainty: After con-
cept detection and confirmation, we are left
with concept predictions that represent prob-
abilities pi,k ∈ [0, 1]. However, the front-end model requires hard concepts in {0, 1} as
inputs. We require a method for retrofitting the system with a mechanism to relay concept
uncertainties through the front-end model f .

3. Methodology

3.1 Uncertainty Propagation

We use uncertainty propagation to allow the system to accept probabilities, rather than the
hard labels required by the front-end model f . We make two key assumptions about the
underlying data distribution to motivate our approach.

Assumption 1. The label y and features x are conditionally independent given the concepts
c

Assumption 2. The concepts {c1, . . . , cm} are conditionally independent given the features
x.

We note that these assumptions might not be met in practice, and include experiments
in settings that violate these assumptions in Section 4. Given these assumptions, we can
write the conditional distribution p(y | x) in terms of quantities that we natively estimate
using the concept detectors and front-end model:

p(y | x) =
∑

c∈{0,1}m
p(y | c,x) p(c | x)

=
∑

c∈{0,1}m
p(y | c) p(c | x) (Assumption 1)

=
∑

c∈{0,1}m
p(y | c)

∏
k∈[m]

p(ck | x) (Assumption 2)
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We can estimate p(y | x) under these assumptions by plugging in our estimates of p(y | c)
and p(ck | x). Given the vector of probability predictions from the concept detectors
pi = (pi,1, . . . , pi,k) , we can compute the estimate of p(y | x) as:

f(pi) :=
∑

c∈{0,1}m
f(c)

∏
k∈[m]

pcki,k(1− pi,k)
1−ck (2)

Computing the estimate in (2) requires 2m calls to the front-end model. In practice, this
is negligible as the vast majority of concept models are trained with a limited number of
concepts. In settings where m is large or computation is prohibitively expensive, however,
we can construct a Monte Carlo estimate using a sample of concept vectors.

Definition 3. Given a label y ∈ {0, 1} and probabilistic prediction p ∈ [0, 1], we say that p
is a calibrated prediction for y if Pr (y = 1 | p = t) = t for all thresholds t ∈ [0, 1].

Proposition 4. Suppose that p is a calibrated prediction for y. Then a selective classification
procedure ϕτ (p) that abstains when p has confidence below 1− τ achieves accuracy at least
1− τ .

Proposition 4 assumes that the front-end model will output calibrated probabilty predic-
tions. In the event that the model is not calibrated then Proposition 4 will hold only given
the degree of calibration. We can address this case by setting τ using a more sophisticated
method that works with “confidence scores” that may or not be calibrated [12].

3.2 Confirmation

Since our goal is to reduce the need for human oversight where possible, we consider a method
that greedily selects concepts to confirm based on the expectation of the gain in certainty.
Our methods associate the confirmation of each concept k with a cost γk ≥ 0 and seek to
select concepts to confirm so that the total cost of confirmation C(S) :=

∑
k∈S γk meets a

fixed confirmation budget B ≥ 0. 2

Algorithm 1 Greedy Concept Selection

Input: Ĉ, set of concept predictions that lead to abstention, h(ĉ) = 0
Input: B ≥ 0, confirmation budget
Input: γ1, . . . , γm, costs to confirm each concept
1: S1, . . . , Sn ← {} concepts to confirm for each instance

2: repeat
3: i∗, k∗ ← argmaxi,kGain(ĉi, k) s.t. k 6∈ Si select best remaining concept

4: Si ← Si ∪ {k}
5: B ← B − γk
6: until B < 0 or Si = [m] for all i
Output: S1, . . . , Sn, confirmations for each sample

2. We can set B ∈ [0,m] to control the average number of concepts to confirm per example. Alternatively,
we can set B ∈ [0, 1], restricts the total number of instances to B.
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One way to select concepts to confirm is to test the sensitivity of model output with
respect to a concept. If confirming concept k leads to a large variance in the prediction, then
confirming the concept will likely significantly impact the prediction. In our experiments,
we use as our gain measure the variance of the result of confirmation, where c̄k is ĉ after
confirming concept k:

Gain(ĉ, k) := Var[f(c̄k)] = E((f(c̄k))2)− (E(f(c̄k)))2 (3)

Since we do not know f(c̄S+{k}) before confirmation, we view f(c̄S+{k}) as a random variable
that takes on values f(c̄S [c̄k = 1]) with probability ĉk and f(c̄S [c̄k = 0] with probability
(1− ĉk). Here c̄S [c̄k = 0] means we have confirmed c̄S at index k with 0.

4. Experiments

We evaluate our method on synthetic and real-world datasets. Our goal is to benchmark the
performance and coverage of our approach across prediction tasks with ablations to separate
the impacts of confirmation and uncertainty propagation. We provide additional details
on and results in Appendix A, and the code to reproduce these results in an anonymized
repository.

4.1 Setup

We consider six classification datasets with concept labels. The melanoma and skincancer

datasets are image classification tasks to diagnose melanoma and skin cancer that are
derived from the Derm7pt dataset [16]. The warbler and flycatcher datasets are image
classification bird identification tasks derived from the CalTech-UCSD Birds dataset [26]. We
process each dataset to binarize categorical concepts (e.g., WingColor or VascularStructures)
and (WingColorRed or IrregularVascularStructures). We construct four systems for each
dataset. Each system is an end-to-end selective classification model that allows for concept-
based interventions. We build each system using the same front-end model and concept
detectors as described in Section 2. We train a front-end model f and concept detectors
g1, . . . , gm for each dataset using logistic regression. We perform uncertainty propagation
using Monte Carlo estimation with 10,000 samples and train concept detectors for each dataset
– other than synthetic – using embeddings from a pre-trained model [i.e., InceptionV3 24].
The four systems include:

• Baseline: An independent concept bottleneck model build using concept detectors g1, . . . , gm
and a front-end model f trained on the true concepts. This is a traditional concept
bottleneck model without conceptual safeguards.

• CS + ImpactConf: Our proposed system uses uncertainty propagation and the targetted
confirmation strategy as described in Section 3.

• Baseline + RandomConf & CS + RandomConf: The Baseline and CS systems paired with a baseline
confirmation strategy that randomly selects concepts for confirmation. We report results
for these systems as a baseline that we can use to assess the value added of our proposed
confirmation strategy.

8

https://anonymous.4open.science/r/conceptual-safeguards/
https://anonymous.4open.science/r/conceptual-safeguards/


Classification with Conceptual Safeguards

Evaluation We split each dataset into a training set to train models and their components
(80%) and a test set (20%) to evaluate their performance. We construct an accuracy coverage
curve for each method on each dataset by plotting the coverage and selective accuracy of the
system for abstention thresholds of τ ∈ [0.5, . . . , 0.95]. (see Section 2). We evaluate these
values when we confirm concepts on a subset of instances on which a model abstains (using
the ImpactConf or the RandomConf strategies). We limit the number of confirmations to
match a confirmation budgets. We then construct accuracy-coverage curves for confirmation
budgets of 0%/10%/20%/50% which reflect the returns to no/low/medium/high human
degrees of human intervention.

4.2 Results

Our results show that in general, our proposed methods CS + RandomConf and CS + ImpactConf
outperform baselines Baseline and Baseline + RandomConf with regards to performance and
coverage under selective classification. These gains vary across datasets. Given the same
performance threshold, we achieve lower coverage on datasets Melanoma and SkinCancer

than on datasets CUBCommon and CUBRare, likely as a result of the differences in the difficulty
and quality of the concepts. In all cases, leveraging uncertainty across concepts improves
this trade-off. These gains vary across datasets, where the difficulty of the task and the
performance of the concept detectors impact the benefit of conceptual safeguards. Across all
tasks, confirming concepts improves performance, with the greatest gains achieved by selecting
the concepts to confirm based on their impact on the final prediction (CS + ImpactConf).

On the Gains of Accounting for Uncertainty The results summarized in Table Table 4
emphasize the advantages of incorporating uncertainty into the model, where the extent of
these advantages varies based on the specific task and confirmation budget. For instance,
when no confirmation is allowed (Confirmation Budget at 0%), the dataset flycatcher

shows little to no benefit from accounting for uncertainty. In contrast, the skincancer

dataset reveals a substantial performance gap between a model that includes uncertainty
(CS + RandomConf, blue) and one that doesn’t (Baseline + RandomConf, green). The impact of
incorporating uncertainty also changes when a confirmation budget is introduced. Even
though uncertainty made little difference in the flycatcher dataset at a 0% confirmation
budget, allowing a 20% confirmation budget led to a significant increase in coverage, from
46.2% to 63.5%, when the threshold is set at τ = 0.05 (see Table 2). This is noteworthy
because it allows for the automation of predictions on more than an additional 17% of
instances without requiring human intervention.

On Learning from Noisy Concepts We evaluate the effects of noisy concepts on model
performance, we construct a synthetic dataset with varying levels of noise in the under-
lying concepts that generate the labels (see Table 6). When the probability of noise is
0%, the concept is fully deterministic and calculated via a parity function of its relevant
features. As the probability of noise increases (e.g., 25% or 75%), the concept becomes
increasingly stochastic, thus simulating real-world scenarios where underlying features may
be subject to noise or uncertainty. Results from the synthetic datasets demonstrate that
the benefits of conceptual safeguards increase with increasingly noisy concepts. With low
noise p(noise) = 25%, conceptual safeguards provide a real but small benefit to coverage and
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Table 1: Coverage vs. accuracy for all methods on all datasets. We include additional results in Appendix A
for multiclass settings. Note that the methods Baseline (black) and Baseline + RandomConf (green) produce
identical results when the confirmation budget is set to 0%. Similarly, the methods CS + RandomConf (blue)
and CS + ImpactConf (purple) are also equivalent under the same condition.
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performance. With high noise p(noise) = 25%, conceptual safeguards provide a significant
benefit. See Appendix A.1 for details on synthetic data construction and experiments.
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Table 2: Coverage for varying performance thresholds τ with confirmation budget 20%. We include results
for additional datasets and confirmation budgets in Appendix A.2.

Dataset Prediction Thresholds Baseline Baseline + RandomConf CS + RandomConf CS + ImpactConf

warbler
n = 5, 994

m = 112

Wah et al. [26]

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

17.3%
74.0%

100.00%
100.00%

30.0%
89.3%

100.00%
100.00%

94.67%
100.00%
100.00%
100.00%

90.0%
100.00%
100.00%
100.00%

flycatcher
n = 5, 994
m = 112

Wah et al. [26]

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

26.9%
44.2%
44.2%
57.7%

46.2%
46.2%
65.4%

100.00%

63.5%
63.5%
82.7%

100.00%

84.62%
100.00%
100.00%
100.00%

melanoma
n = 616

m = 17
Kawahara et al. [16]

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

0.0%
0.0%
0.0%

18.6%

8.6%
8.6%

41.4%
41.4%

37.1%
37.1%
64.3%
64.3%

61.43%
68.57%

100.00%
100.00%

skincancer
n = 616
m = 17

Kawahara et al. [16]

τ = 0.05
τ = 0.1

τ = 0.15
τ = 0.2

0.0%
0.0%

11.0%
11.0%

7.3%
15.9%
25.6%
36.6%

17.1%
17.1%
17.1%

100.00%

32.93%
54.88%
85.37%
85.4%

noisyconcepts25
n = 100, 000

m = 3

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

0.0%
32.3%
43.6%
80.4%

0.0%
33.9%
45.8%
86.8%

4.32%
36.3%
54.6%
83.8%

0.0%
44.66%
69.16%
93.31%

noisyconcepts75
n = 100, 000
m = 3

τ = 0.05

τ = 0.1

τ = 0.15
τ = 0.2

0.0%
0.0%
0.0%
0.0%

0.0%
0.0%
0.0%
0.0%

0.10%
6.4%
6.4%
6.4%

0.0%
11.17%
11.17%
11.17%

On Confirmation Confirming concepts improves performance across all datasets. On
dataset flycatcher, confirmation with a budget of 20% improves coverage from 26.92%
(Baseline) to 46.15% (Baseline + RandomConf) at threshold τ = 0.5, leading to nearly twice as many
samples that can be automated. These gains compound with conceptual safeguards, where
coverage reaches 63.46% with uncertainty propagation alone, without sacrificing performance
or requiring additional human intervention (CS + RandConf). For conceptual safeguards overall,
this coverage improves to reach 84.62% (CS + ImpactConf). This additional gain is a result
of ImpactConf. Instead of intervening randomly on concepts up to the confirmation budget,
ImpactConf considers the variance of the confirmation with respect to the outcome prediction
and intervenes first on the highest impact concepts. This weighting allows humans to confirm
the concepts with the greatest benefit first, leading to considerable gains in coverage without
sacrificing safety. Confirming concepts can also lower automation tasks in applications where
the concepts require a lower level of expertise than the label. For example, non-expert users
may be able to confirm concepts such as WingColorRed, while confirming the final species
prediction to RedFacedCormorant may require greater expertise. The gains of confirmation
depend on the underlying task and dataset. For example, the gains may be smaller when the
concept detectors perform well enough without confirmation to achieve high accuracy (e.g.,
for the warbler and noisyconcepts25 datasets).

On Multiclass Prediction Tasks While we limit our theoretical exposition to binary
prediction tasks, conceptual safeguards can also be applied in multiclass settings. The main
adaption required is in the uncertainty propagation component of the conceptual safeguards.
Specifically, rather than propagating uncertainty about the prediction in general, we extend
the prediction vector to include probabilities for each of the classes using the possible concepts
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c ∈ {0, 1}m. For the selective classification component ϕτ , we estimate uncertainty based on
the likelihood of the most probable class and threshold prediction accordingly. We include
results on multiclass datasets in Appendix A.3.

5. Concluding Remarks

In this work, we introduce conceptual safeguards, a versatile and interpretable approach
for automating classification tasks. Empirical investigation substantiates the effectiveness
of our approach in various applications, establishing it as a promising avenue for safe and
interpretable automation. One limitation of our approach is its potential to exacerbate
performance disparities over subpopulations [15]. Another limitation is the model’s reliance
on well-defined concepts to capture all relevant information about the label from the input.
If the chosen concepts do not encapsulate all necessary information, the model’s performance
will necessarily be compromised. These limitations highlight important areas for future
research, centered on improving equitable outcomes and refining the utility of concept
bottleneck models within our conceptual safeguards framework.
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Appendix A. Supporting Experimental Information

A.1 Datasets

Table 3: Overview of datasets used in Section 4. Each dataset is publically available and de-identified where
relevant.

Dataset Reference Outcome n m |yi = 1|

melanoma Kawahara et al. [16] lesion is melanoma 616 17 151

skincancer Kawahara et al. [16] lesion is cancerous 616 17 177

cubcommon Wah et al. [26] bird in 10 most prevalent classes 5,994 112 2,907

cubrare Wah et al. [26] bird in 60 least prevalent classes 5,994 112 3,057

warbler Wah et al. [26] bird is type of warbler 5,994 112 2,907

flycatcher Wah et al. [26] bird is type of flycatcher 5,994 112 3,057

cubspecies Wah et al. [26] bird species 5,994 112 –

cubtypes Wah et al. [26] bird type 5,994 112 –

noisy – logistic function on C 100,000 3 65,663

melanoma & skincancer These datasets are derived from the Derm7pt dataset [16], which is de-
identified and publicly available without patient information. We preprocess the dataset by splitting
the original seven categorical image annotations (pigment_network, streaks, pigmentation,

regression_structures, dots_and_globules, blue_whitish_veil, vascular_structures)
into seventeen binary concepts. We consider two tasks: predicting melanoma and predicting
skincancer (melanoma or basal cell carcinoma). We split the validation indices in the origi-
nal dataset into a validation set and a hold-out test set for evaluation. We then balance the resulting
classes by downsampling the majority class. To train the concept models, we augment the original
training images with random color enhancements and random flipping to obtain 10x total training
images.

cubcommon, cubrare, warbler, flycatcher, cubspecies & cubtypes These datasets are
derived from the CUB 2011 dataset [26]. We follow the same preprocessing described in [17].
cubcommon predicts if a bird is “common” or in the top 10 largest groups. cubrare predicts if a
bird is “rare” or in the bottom 60 groups. warbler classifies birds of type warbler and flycatcher

classifies birds of type flycatcher. cubspecies and cubtypes are multiclass datasets for predicting
bird species and bird types, respectively. To train the concept models, we augment the original
training images with random color enhancements and random flipping to obtain 10x total training
images.

noisy The noisy datasets are synthetic datasets that we primarily use to evaluate how their
performance changes with respect to the quality of concept detectors. We sample these the examples
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in these datasets (xi, ci, yi) from the following distribution:

x1, . . . , x5 = Bernouilli(0.7)
ξ1, ξ2, ξ3 = Bernouilli(pξ)

c1 = parity(x1, x2, x4)⊕ ξ1
c2 = parity(x1, x2, x3)⊕ ξ2
c3 = parity(x1, x2, x5)⊕ ξ3
p = logistic(1.0c1 + 2.0c2 + 3.0c3 − 2.0)

y ∼ Bernoulli(p)

(4)

The distribution shown in (4) includes an explicit noise parameter pξ ∈ [0, 1] that we can set to
control the noise in concept labels. When pξ = 0, the values of c1, c2, c3 operate as parity functions,
which can only be learned through a sufficiently complex model. When pξ > 0, we inject noise into
the concept labels by randomly flipping the values of c1, c2, c3 with probability pξ. Thus, the noise
parameter sets an upper bound on the accuracy of concept labels – and larger values of pξ lead to
less accurate concept models. In contrast to the real-world datasets, we train the concept detectors
for the noisy datasets directly (i.e., without an embedding layer) by fitting multi-layer perceptron
with a single hidden layer.
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A.2 Additional Results

Table 4: Coverage vs. accuracy for all methods on a subset of datasets using multilayer perceptron
concept detectors. Using a more complex model can improve baseline performance, though improvements are
task-dependent, and usually small compared to strategies like improving the confirmation policy or increasing
the confirmation budget. For example, using an MLP instead of logistic regression improves performance
across all strategies, with the greatest gains seen in the Baseline strategy. However, this improvement is small
compared to increasing the confirmation budget from even 10% to 20%.
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Table 5: Coverage for varying performance thresholds τ with confirmation budget 10%

Dataset Prediction Thresholds Baseline Baseline + RandomConf CS + RandomConf CS + ImpactConf

warbler
n = 5, 994

m = 112
Wah et al. [26]

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

17.3%
74.0%

100.00%
100.00%

26.0%
86.7%
97.3%

100.00%

92.00%
100.00%
100.00%
100.00%

85.3%
100.00%
100.00%
100.00%

flycatcher
n = 5, 994

m = 112

Wah et al. [26]

τ = 0.05

τ = 0.1

τ = 0.15
τ = 0.2

26.9%
44.2%
44.2%
57.7%

38.5%
38.5%
38.5%
96.2%

51.9%
51.9%
76.9%
96.2%

100.00%
100.00%
100.00%
100.00%

cubcommon
n = 5, 994
m = 112

Wah et al. [26]

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

2.2%
12.5%
22.4%
22.4%

3.2%
15.7%
26.4%
26.4%

10.2%
10.2%
39.1%
63.1%

21.70%
52.09%
71.62%
91.82%

cubrare
n = 5, 994

m = 112

Wah et al. [26]

τ = 0.05

τ = 0.1

τ = 0.15
τ = 0.2

0.0%
11.4%
11.4%
31.9%

0.0%
13.7%
24.4%
39.6%

2.8%
18.5%
18.5%
35.6%

32.72%
32.72%
68.61%
91.99%

melanoma
n = 616
m = 17

Kawahara et al. [16]

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

0.0%
0.0%
0.0%

18.6%

4.3%
4.3%

21.4%
21.4%

11.43%
27.1%
27.1%
52.9%

2.9%
64.29%
64.29%

100.00%

skincancer
n = 616

m = 17

Kawahara et al. [16]

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

0.0%
0.0%

11.0%
11.0%

0.0%
13.4%
13.4%
30.5%

9.8%
25.61%
53.66%

100.00%

25.61%
25.61%
45.1%
95.1%

noisyconcepts25
n = 100, 000
m = 3

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

0.0%
32.3%
43.6%
80.4%

0.0%
33.2%
44.8%

84.00%

2.12%
34.5%
49.2%
80.2%

0.0%
39.77%
65.35%
82.7%

noisyconcepts75
n = 100, 000

m = 3

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

0.0%
0.0%
0.0%
0.0%

0.0%
0.0%
0.0%
0.0%

0.0%
3.24%
3.24%
3.24%

0.0%
0.0%
2.4%
2.4%
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Table 6: Coverage for varying performance thresholds τ with confirmation budget 20%

Dataset Prediction Thresholds Baseline Baseline + RandomConf CS + RandomConf CS + ImpactConf

warbler
n = 5, 994

m = 112
Wah et al. [26]

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

17.3%
74.0%

100.00%
100.00%

30.0%
89.3%

100.00%
100.00%

94.67%
100.00%
100.00%
100.00%

90.0%
100.00%
100.00%
100.00%

flycatcher
n = 5, 994

m = 112

Wah et al. [26]

τ = 0.05

τ = 0.1

τ = 0.15
τ = 0.2

26.9%
44.2%
44.2%
57.7%

46.2%
46.2%
65.4%

100.00%

63.5%
63.5%
82.7%

100.00%

84.62%
100.00%
100.00%
100.00%

cubcommon
n = 5, 994
m = 112

Wah et al. [26]

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

2.2%
12.5%
22.4%
22.4%

0.0%
16.0%
29.4%
29.4%

11.7%
22.7%
42.2%
70.1%

35.23%
52.09%

100.00%
100.00%

cubrare
n = 5, 994

m = 112

Wah et al. [26]

τ = 0.05

τ = 0.1

τ = 0.15
τ = 0.2

0.0%
11.4%
11.4%
31.9%

0.0%
15.0%
15.0%
43.1%

8.5%
19.5%
19.5%
65.9%

33.56%
51.09%
70.12%

100.00%

melanoma
n = 616
m = 17

Kawahara et al. [16]

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

0.0%
0.0%
0.0%

18.6%

8.6%
8.6%

41.4%
41.4%

37.1%
37.1%
64.3%
64.3%

61.43%
68.57%

100.00%
100.00%

skincancer
n = 616

m = 17

Kawahara et al. [16]

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

0.0%
0.0%

11.0%
11.0%

7.3%
15.9%
25.6%
36.6%

17.1%
17.1%
17.1%

100.00%

32.93%
54.88%
85.37%
85.4%

noisyconcepts25
n = 100, 000
m = 3

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

0.0%
32.3%
43.6%
80.4%

0.0%
33.9%
45.8%
86.8%

4.32%
36.3%
54.6%
83.8%

0.0%
44.66%
69.16%
93.31%

noisyconcepts75
n = 100, 000

m = 3

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

0.0%
0.0%
0.0%
0.0%

0.0%
0.0%
0.0%
0.0%

0.10%
6.4%
6.4%
6.4%

0.0%
11.17%
11.17%
11.17%
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Table 7: Coverage for varying performance thresholds τ with confirmation budget 50%

Dataset Prediction Thresholds Baseline Baseline + RandomConf CS + RandomConf CS + ImpactConf

warbler
n = 5, 994

m = 112
Wah et al. [26]

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

17.3%
74.0%

100.00%
100.00%

84.7%
93.3%

100.00%
100.00%

83.3%
100.00%
100.00%
100.00%

86.67%
92.7%

100.00%
100.00%

flycatcher
n = 5, 994

m = 112

Wah et al. [26]

τ = 0.05

τ = 0.1

τ = 0.15
τ = 0.2

26.9%
44.2%
44.2%
57.7%

67.3%
76.9%
90.4%

100.00%

82.7%
86.5%

100.00%
100.00%

100.00%
100.00%
100.00%
100.00%

cubcommon
n = 5, 994
m = 112

Wah et al. [26]

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

2.2%
12.5%
22.4%
22.4%

10.7%
19.7%
69.8%
80.8%

17.0%
51.6%
81.0%
81.0%

100.00%
100.00%
100.00%
100.00%

cubrare
n = 5, 994

m = 112

Wah et al. [26]

τ = 0.05

τ = 0.1

τ = 0.15
τ = 0.2

0.0%
11.4%
11.4%
31.9%

3.0%
18.5%
67.4%
67.4%

14.5%
28.4%
77.5%
77.5%

100.00%
100.00%
100.00%
100.00%

melanoma
n = 616
m = 17

Kawahara et al. [16]

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

0.0%
0.0%
0.0%

18.6%

18.6%
30.0%
51.4%
75.7%

44.3%
62.9%

100.00%
100.00%

72.86%
80.00%

100.00%
100.00%

skincancer
n = 616

m = 17

Kawahara et al. [16]

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

0.0%
0.0%

11.0%
11.0%

0.0%
28.0%
56.1%
84.1%

30.49%
42.7%
85.4%
85.4%

0.0%
48.78%

100.00%
100.00%

noisyconcepts25
n = 100, 000
m = 3

τ = 0.05
τ = 0.1

τ = 0.15

τ = 0.2

0.0%
32.3%
43.6%
80.4%

0.0%
36.0%
65.6%
91.6%

11.0%
41.99%
64.1%
92.8%

19.75%
38.7%

78.19%
100.00%

noisyconcepts75
n = 100, 000

m = 3

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

0.0%
0.0%
0.0%
0.0%

0.0%
0.0%
0.0%
0.0%

1.67%
15.8%
15.8%
15.8%

0.0%
29.55%
29.55%
68.25%
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A.3 Multiclass Experiments

Table 8: Coverage vs. accuracy for all methods on multiclass datasets.

Confirmation Budget

0% 10% 20% 50%

cubspeciesinfo

n = 5, 994
m = 112
Wah et al. [26]

0% 25% 50% 75% 100%
Coverage

50%

60%

70%

80%

90%

100%
Se

le
ct

iv
e 

Ac
cu

ra
cy

Budget 0%

Baseline
Baseline + RandomConf
CS + RandomConf
CS + ImpactConf

0% 25% 50% 75% 100%
Coverage

50%

60%

70%

80%

90%

100%

Se
le

ct
iv

e 
Ac

cu
ra

cy

Budget 10%

0% 25% 50% 75% 100%
Coverage

50%

60%

70%

80%

90%

100%

Se
le

ct
iv

e 
Ac

cu
ra

cy

Budget 20%

0% 25% 50% 75% 100%
Coverage

50%

60%

70%

80%

90%

100%

Se
le

ct
iv

e 
Ac

cu
ra

cy

Budget 50%

cubtypes

n = 5, 994
m = 112
Wah et al. [26]

0% 25% 50% 75% 100%
Coverage

50%

60%

70%

80%

90%

100%

Se
le

ct
iv

e 
Ac

cu
ra

cy

Budget 0%

Baseline
Baseline + RandomConf
CS + RandomConf
CS + ImpactConf

0% 25% 50% 75% 100%
Coverage

50%

60%

70%

80%

90%

100%
Se

le
ct

iv
e 

Ac
cu

ra
cy

Budget 10%

0% 25% 50% 75% 100%
Coverage

50%

60%

70%

80%

90%

100%

Se
le

ct
iv

e 
Ac

cu
ra

cy

Budget 20%

0% 25% 50% 75% 100%
Coverage

50%

60%

70%

80%

90%

100%

Se
le

ct
iv

e 
Ac

cu
ra

cy

Budget 50%

Table 9: Coverage for varying performance thresholds τ with confirmation budget 10%

Dataset Prediction Thresholds Baseline Baseline + RandomConf CS + RandomConf CS + ImpactConf

cubtypes
n = 5, 994

m = 112
Wah et al. [26]

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

3.3%
37.9%
48.4%
57.9%

16.7%
45.7%
58.3%
68.1%

25.7%
36.7%
50.3%
63.8%

68.95%
75.96%
83.81%
92.15%

Table 10: Coverage for varying performance thresholds τ with confirmation budget 20%

Dataset Prediction Thresholds Baseline Baseline + RandomConf CS + RandomConf CS + ImpactConf

cubspeciesinfo
n = 5, 994

m = 112
Wah et al. [26]

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

8.7%
8.7%

12.4%
16.7%

13.4%
17.7%
23.2%
33.1%

12.7%
24.4%
24.4%
39.6%

50.92%
58.10%
68.61%
68.61%

cubtypes
n = 5, 994

m = 112

Wah et al. [26]

τ = 0.05

τ = 0.1

τ = 0.15
τ = 0.2

3.3%
37.9%
48.4%
57.9%

3.7%
50.9%
64.1%
88.6%

44.7%
60.1%
74.0%
88.8%

77.30%
82.97%

100.00%
100.00%
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Table 11: Coverage for varying performance thresholds τ with confirmation budget 50%

Dataset Prediction Thresholds Baseline Baseline + RandomConf CS + RandomConf CS + ImpactConf

cubspeciesinfo
n = 5, 994
m = 112

Wah et al. [26]

τ = 0.05

τ = 0.1

τ = 0.15
τ = 0.2

8.7%
8.7%

12.4%
16.7%

37.1%
45.1%
55.9%
69.4%

46.1%
55.9%
70.1%
70.1%

67.11%
76.79%
84.64%

100.00%

cubtypes
n = 5, 994

m = 112
Wah et al. [26]

τ = 0.05

τ = 0.1
τ = 0.15

τ = 0.2

3.3%
37.9%
48.4%
57.9%

71.8%
86.1%
91.5%

100.00%

72.5%
92.0%
99.8%

100.00%

92.99%
100.00%
100.00%
100.00%
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